
NASA Technical Memorandum 104632

Particle-Mesh Techniques on the MasPar

Peter MacNeice, Clark Mobarry, and Kevin Olson

MARCH 1996

NASA Technical Memorandum 104632

Particle-Mesh Techniques on the MasPar

Peter MacNeice

Hughes STX

Greenbelt, Maryland

Clark Mobarry

NASA/Goddard Space Flight Center

Greenbelt, Maryland

Kevin Olson

George Mason University

Fairfax, Virginia

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

1996

This publication is available from the NASA Center for AeroSpace Information,

800 Elk_ridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.

1 Introduction

Particle simulation techniques attempt to model many-body systems by solv-

ing the equations of motion of a set of particles or pseudo-particles which are

used to represent the system [1]. Particle-In-Cell(PIC) techniques represent

a popular variant on this theme, in which a numerical mesh is added to more

efficiently compute the forces acting on these model particles. PIC codes are

commonly used to model plasmas [2] and gravitational N-body systems.

Previous SIMD implementations of PIC [3, 4, 5] have reported serious

performance degradation as the particles became more clustered in space. In-

deed Walker[3] in his conclusions reported a suggestion that this performance

degradation might make the Vlasov-Maxwell method more appropriate than

PIC for plasma models on the CM-2.

In this report we consider three different approaches which we have tested,

for implementing a 3D electrostatic plasma or gravitational PIC code on the

SIMD architecture of the MasPar MP-2 at Goddard Space Flight Center.

We show that it is possible, by combining algorithms to set a limit on the

performance degradation resulting from particle clustering.

In the most abstract sense, the task we face in implementing our PIC

code on the MP-2 is to map both an algorithm and a data structure to the

architecture. The four basic steps in a PIC algorithm are

1. assign particle charge(mass) to the mesh

2. solve for the force field on the mesh

3. interpolate force from the mesh to the particle positions

4. push the particles.

In combination these four steps involve computation and communication be-

tween two different data structures. The field data has the qualities of an

ordered array in the sense that each element has specific neighbors. The par-

ticle data has the qualities of an unstructured vector, in which element i refers

to particle i, and no element has any special relationship to its neighbors in
the vector.

Steps 2 and 4 are parallelizable in rather obvious ways, since they involve

only simple and completely predictable data dependencies, and do not couple

the two data structures. Steps1 and 3 howeverdocouplethe two data struc-
tures, with complicated and unpredictable data dependencieswhich e_olve
during the simulation. It is thesestepswhich invariably dominate the exe-
cution times of parallel PIC codes,and will be the focusof this paper.

On a serial machineour codewill executeits computational workload in
a time which is independentof anycorrelationsin the spatial locationsof the
particles. This is not true on parallelmachines.Particle clusteringcancreate
communication and/or computational hot-spotswhich impair performance.
For example,an algorithm which worksvery efficiently for an homogeneous
plasmaapplication maybe very inefficientfor a highly clusteredgravitational
N-body problem. This canbe an important factor in choosingan algorithm.

In section 2 we describe the MasPar MP-2, in section 3 we define the
computational tasks to be accomplished,in section 4 we outline the three
algorithms tested, and in section 5 we presentperformanceresults for these
algorithms.

2 The MasPar MP-2

The MasPar MP-2 at Goddard Space Flight Center has a SIMD architecture

with 16384 processors. The nominal peak performance is 6.2 GFLOPS. Each

processor has 64 KBytes of dedicated data memory. The processors are

arranged in a 2D array with dimensions 128 x 128. Straight-line connections,

known collectively as the X-net, exist between processors in the north, south,

east, west, north-east, south-east, south-west and north-west directions. At

the edges of the processor array the X-net wraps around so that the array has

the same topology as the surface of a torus. Inter-processor communications

can be achieved in one of two ways. The global router can be used for more

complex patterns or for communication between widely spaced processors,

while for regular patterns over short distances the X-net communications are

much more efficient. The MasPar series broadens the definition of SIMD in

at least one important way. It enables indirect addressing within a processor

memory.

4

3 The Computational Task

Step 1 of the PIC process, the assignment of the particle charge (or mass)
to the mesh to compute a density in each mesh cell is a scatter-with-add

operation. The following Fortran 77 code will sum the charge density of the

particles, using Nearest Grid Point(NGP) interpolation, and assuming mesh

cells with sides of length h, and individual particle charge q.

parameter(n= ...)

parameter(nx=..., ny=..., nz=...

real x(n), y(n), z(n)

real density(nx,ny,nz)

! number of particles

! dimensions of mesh

! particle coordinates

' mesh charge(mass) density

doi=1, n

ix = int(x(i)/h)

iy = int(y(i)/h)

iz = int(z(i)/h)

density(

end do

+ 1

+ 1

+ 1

! loop through particle list

ix, iy, iz) = density(ix, iy, iz) + q/h**3

On a serial machine this loop executes in order. On a parallel machine

however (and also on vector processors) the operations within the loop can

be executing for many different values of i simultaneously. On the MasPar

the particle data (vectors x,y,z) and the density array, density, are dis-

tributed across the memory of the processors in the processor array. At a

given time up to 16,384 processors might be simultaneously calculating the

contributions of different particles to the array density. Each of these con-

tributions needs to be communicated from the processor storing that particle

data to the processor storing the appropriate element of density. This task

is complicated by the possibility that more than one, and possibly a great

many particles might be simultaneously trying to update the same element of

density. In the presence of these communication hot spots, we need to guar-

antee that no contributions are ignored, and that the sums are accumulated

efficiently.

Step 3, the interpolation of force from the mesh to the particle locations

is a gather operation. For the simple NGP scheme, in Fortran 77,

real particle_force_x(n)

real mesh_force_x(nx, ny, nz)

! x component of force on particles

! x component of force at mesh points

doi= 1, n

ix = int(x(i)/h) + 1

iy = int(y(i)/h) + 1

iz = int(z(i)/h) + 1

particle_force_x(i)

particle_force_y(i)

particle_force_z(i)

end do.

! loop through the particle list

= mesh_force_x(ix, iy, iz)

= mesh_force_y(ix, iy, iz)

= mesh_force_z(ix, iy, iz)

Once again we can see that on the MasPar this task can suffer from

communication hot spots, when many particles are physically located in the

same mesh cell.

These then are the tasks we wish to implement on the MasPar. For the

sake of clarity, we have illustrated these tasks using simple Nearest Grid Point

interpolation. However NGP is rarely ever used in PIC codes, and so instead

we will use Cloud-in-Cell. We assume that each particle is a uniform density

charge(mass) cloud in the shape of a cube with sides of length h. In 3D CIC

each particle overlaps 8 mesh cells and so during the charge assignment tasks

6

it makes8 separatecontributions to the chargedensity. Similarly the force
on a particle is obtained by interpolation from the forceat the 8 meshpoints
bounding the particle's location.

4 Charge Assignment and Force Interpola-

tion Algorithms

On a distributed memory machine, such as the MasPar, data layout across

processor memory is an integral part of algorithm design. The challenge on

the MasPar is to spread the computation and communication workload as

evenly as possible, while minimizing the amount of global router communi-

cation required3

The field arrays will be laid out so as to optimize the field solver routine.

We do not need to consider the fine details of this layout, which will vary

depending on the exact size of the physical mesh and the size of the processor

array. All we really need to recognize is that any acceptable layout will

establish a mapping between physical mesh points and the processor array

so that it includes most if not all the processors, and that nearest neighbor

mesh cells will map to processors which are no further apart than nearest

neighbors. For example if we have a 3D mesh of size 128 × 128 × 128 and

a processor array of size Npro_ = 128 × 128, we could map cell (i, j, k) into

processor (i, j), rendering the third dimension in processor memory.

In the discussion that follows we will assume this exact problem size,

processor array size and field data layout. The solution of Poisson's equation

for the electricstatic potential for this mesh size, using MasPar library fft

routines, takes 1 second. We will also assume cloud-in-cell(CIC) weighting

for both charge assignment and force interpolation.

The major design question which faces us is how to distribute the particle

data. There are some obvious choices which focus either on computational

load balance or on efficient interprocessor communication.

1A plural floating point multiply takes 40 clocks on the MP-2, an X-net operation send-
ing a real number a distance of 1 processor takes 41 clocks, and a random communication
pattern using the global router, with all processors participating takes _ 5000 clocks.

7

4.1 Uniform Load Balance - with communication hot

spots

The first option is to parcel the particles out evenly amongst the processors,

paying no attention to their physical locations[4]. We have implemented this

in both MPFortran and MPL. 2 This particle assignment option achieves the

best computational load balance during the particle push and during the

purely computational parts of the charge deposition and force interpolation

tasks. It also makes memory management easier, since we know exactly how

much memory we will need in every processor.

However it makes very heavy use of the global router for interprocessor

communication. Any given particle can potentially seek to deposit charge

on any of the processors in the processor array. Using CIC for a 3D model,

each particle has 8 charge contributions to distribute to a 2 × 2 × 2 block of

elements somewhere in the charge array. "In the MPFortran implementation

each of these 8 words represents a distinct message to be sent via the router.

In MPL we can pack these 8 components into a message which is then sent

by the global router to one of the processors storing the 2 x 2 x 2 block,

which then distributes them, as required among its neighboring processors

using the X-net.

Similarly during the force interpolation the particle needs to interpolate

between the 24 field components associated with the same 2 × 2 × 2 block (ie

8 components for each of the x, y and z directions). Again the MPFortran

gathers these 24 data words using 24 separate messages collected via the

global router. In MPL we have more direct control over the communication

process. In MPL it is more efficient to pack the 24 data words into a single

message. Using Xnet calls, each virtual processor pre-packs the 24 words

which will be needed by any particle whose low index corner lies within its

mesh cell. Then we use the router to fetch the appropriate pre-packaged 24

words for each particle, after which all the force interpolations can be done

on processor.

This scheme is expected to be slow because of its extensive use of the

global router, and it scales poorly in situations where clustering occurs. Com-

munication hot spots occur when a large number of messages are being sent

2MPL which is an abbreviation for MasPar Programming Language is a parallel dialect
of C.

to the sameprocessorat the same time. The processorscan only process
one router messageat a time. If at a given time n p particles are physically

located in cells which map into processor p, then processor p will need to

receive n p messages during that timesteps charge deposition. This algorithm

therefore will scale as n_ax, the maximum value of n p across the processor

array.

The MPFortran implementation of this algorithm is essentially an opti-

mized version of the sendwithAdd function from MPL. It can be obtained in

MPFortran through the use of the MPFortran compiler 'collisions' directive.

For example, the charge assignment code listed in section 3 would become

real x(n), y(n), z(n) ! particle coordinates

real density(nx,ny,nz) t mesh charge(mass) density

integer ix(n), iy(n), iz(n)

ix = int(x/h) + 1

iy : int(y/h) + 1

iz = int(z/h) + i

cmpf collisions

density(ix, iy, iz) = density(ix, iy, iz) + q/h**3.

4.2 A Particle Migration Strategy

We can avoid the router completely if we distribute the particles amongst

the processors according to the same mapping used for the field arrays [3][6].

If a particle lies in cell (i, j, k) we store it on the processor to which we

mapped cell (i, j, k). During the charge deposition, no particle will need to

send charge any further than to a neighboring processor, and during the force

interpolation the mesh field values which the particle needs are either on pro-

cessor or stored by a neighbor. This enables us to use X-net communications

exclusively. To maintain this locality we are required to migrate particle in-

formation from processor to processor as the particles move between mesh

cells. Since our timestep constraint limits the distance any particle can travel

9

during that timestep to lessthan onemeshcell width, the migration can be
achievedefficiently usingthe X-net.

There are of coursedrawbacksassociatedwith this scheme. The addi-
tional code neededto perform the particle data migration makesthe algo-
rithm more difficult to program and debug. It alsosuffersfrom load imbal-
anceasparticle clusteringdevelops.In this case both the communication and

computation costs scale as nPm_r. Processor memory management is tricky.

We have to allocate enough memory that the most heavily populated proces-

sor does not run out of memory. However this means that a lot of memory

space in other processors will be allocated and never used.

One possible solution to the memory management weakness is to sup-

plement this scheme with a backup routine similar to that used in the uni-

formly load balanced technique above. We will refer to this as the 'hybrid

migration' scheme. Two distinct particle populations are identified, those

which have been migrated successfully(population I) and those which have

not(population II). We use the migration strategy wherever possible. Any

population I particle which tries to migrate to a processor whose memory

is already full will be left where it is and relabeled as population II. After

we deposit the population I charge to the mesh, we use the global router

to deposit charge from any population II particles. Similarly, when we have

completed force interpolation for the population I particles we use the router

approach to find the forces for any population II particles. At regular inter-

vals (i.e. every 10 time steps perhaps), we test to see if the population II

particles might now be placed into the correct processors and so transferred

back to population I. This hybrid scheme enables us to minimize memory

wastage. Its performance depends on the spatial distribution of particles,

and lies somewhere between that of the pure migration approach and of the

load balanced approach.

4.3 An Algorithm without Communication Hot Spots

We can eliminate communication hot spots and achieve a more attractive

scaling of the charge deposition and force interpolation tasks by combin-

ing messages to the greatest extent possible before using the global router
hardware.

This is possible if, before each timestep, we sort the particles so that

all particles that contribute to the same mesh location form a contiguous

10

segmentin the particle list. This implies that there is at most onesegment
in the particle list correspondingto eachmeshlocation. Then we canusea
segmentedvectorscan-addto sum the chargecontributions in eachsegment.
The accumulatedchargedensitysumscan then be distributed, with minimal
router contention,to the appropriateprocessors.The force interpolation can
be performedin a similar way, taking advantageof the sorted particle list
to avoid communicationhot spots. The particle at the tail of eachsegment
fetchesthe force data that it needs. Since no two segmenttails want the
samedata there is minimal router contention. This data is then copied from
the segmenttail to the other particles in that segmentusing a segmented
vectorscan-copy.

Efficient parallel algorithms exist for both the sorting and segmented
vector scanoperations.

To sort the particle list we used a version of the bitonic sort [7] which
is availableasshare-ware[8]. This MPL coding of the bitonic sort executes
in 0.63secondson a 16K processorMP-2 for n-1048576 64-bit records.An
alternativesort, the B-Flashsort[9][10]with recursivesub-samplingpromises
to be faster whenthe numberof particlesgrowsoverhalf a million on a 16K
processorMP-2.

A segmentedvector scan-addis essentially a fast method to compute
linear recurrencessuchas:

parameter (n=16)

real seg(n), src (n),sum(n)

data seg /0,I,i,1,1,0,1,0,i,I,0,i,I,i,i,i/

data src /1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1/

do i=1 ,n

sum(i) = seg(i)*sum(i-1) + src(i)

enddo

where seg(1) = 0, and where seg(±) = 0 wherever i is the first index of

a new segment. The results of this serial code snippet are

seg = 0111101011011111

src = 1111111111111111

sum -- 1234512123123456.

This operation is not a serial bottleneck. It can be coded to execute in

O((n/p) log 2 _p) SIMD operations on the MasPar MP-2, where n is the num-

ber of elements, p is the number of processors and _p is the number of pro-

11

cessorsspannedby the longest segment[11]. Our parallel MPL coding of
the recurrencealgorithm aboveexecutesin 2.8 microsecondsfor n--1048576
records.Our implementationof this algorithm[12]usesa data layout in which
the n particles in the sorted particle list are stored in blocks of size nip with

the first block assigned to processor 1, the second to processor 2, and so on.

We note that this strategy has a natural advantage for implementa-

tion of the particle-mesh(PM) part of a particle-particle-particle-mesh(P3M)

code [1]. Particle sorting is required in the particle-particle(PP) section of

the force evaluation to establish which particles are near neighbors. If the

sort/scan-add scheme was used for the PM parallelization no further sorting

would be required during the PP stage.

5 Performance

We have explored the performance of these algorithms as a function of both

the degree of spatial clustering of particles and of the total number of parti-

cles.

5.1 Spatial Clustering of Particles

As we have mentioned, some of these algorithms will suffer from computa-

tional and/or communication hot spots when spatial clustering of particles

Occurs.

To illustrate this we have developed the following idealized test case. n

particles have been placed into nd clusters, whose centers are located at

randomly chosen coordinates within the 1283 mesh. Each cluster contains

n/nd particles. The clusters have a radius R given by

R 128 x n_l/3f
A

and the particle locations within a cluster are chosen randomly, subject to

an r -2 density distribution, where r is the particles distance from the center

of its cluster. The factor f is used to adjust the radius of the clusters. This

test case mimics the clustering which might be encountered modeling a small

number of interacting galaxies. By increasing f sufficiently we can make the

particle distribution completely random.

12

The load balanced(both MPFortran and MPL versions), hybrid migra-
tion, andsort/scan-addalgorithmsweretested. The clusterswereassigneda
randomly chosentranslational velocityto ensurethat in the hybrid migration
casethe particle migration routineswereexercised.

We chosen = l0 s and na = 10, and adjusted the degree of clustering

by varying f. Results are presented in figure 1. Figure 1 shows average

execution times per timestep for the combination of charge deposition and

force evaluation tasks for all 3 algorithms. These times are plotted against the
P P

time averaged value of n,.naz/navg. Recall that n p is the number of particles

sending charge to processor p, n_o _ is the maximum value of n p amongst all

the processors, and n_vg is the average value.

For the load balanced algorithm there are no computational hot spots.

The algorithms efficiency falloff as f decreases and clustering develops is

a direct consequence of the communication hot spots which develop. The

MPFortran and MPL versions overall times and scaling were very similar

but with different divisions between the charge deposition and force evalua-

tion tasks. The MPFortran compiler generates more efficient code but MPL

provides finer control with which to optimize interprocessor communications.

For the hybrid migration algorithm the situation is more complicated.

Let us assume that each processor's memory is large enough to accommodate

nmaz particles. Let us also assume for argument sake that nmaz = 2n/1282.

For a uniform spatial distribution of particles, ie f - c_, all the processors

have the same number of particles, all particles can be designated popu-

lation I and can be migrated successfully, and there are no computational

or communication hot spots. As we reduce f clustering starts to develop.

The computational and communication balances deteriorate as f decreases.

As we decrease f further, we find that some particles can no longer be mi-

grated successfully and are classified as population II. This does not make the

computational load balance any worse, but the communication load balance

continues to deteriorate. As f continues to decrease the fraction of particles

in population II grows steadily, until eventually almost all the particles are

population II. At this point the overhead associated with maintaining two

populations and dealing with the few population I particles remaining is no

longer cost effective, and the load balanced scheme is faster.

The sort/scan-add algorithm has a much more attractive scaling as clus-

tering develops. The current implementation of the bitonic sort and the

scan-add algorithms have deterministic execution times for a given number

13

g]
¢9
_9
g]

.4

100.0

1.0

0.1

' ' ' ' ''1 ' ' ' ' ''1

// /

/ t i

// //

/ "-
f

/
I

_.pf.

i

i i i , ,iJll , , I , , , ,,,

1 10 100 1000

nP, JnP. g

Figure 1: Average execution time per timestep for the combination of charge

deposition and force evaluation tasks for the MPFortran load balanced(solid),

sort/scan-add(dotted) and MPL hybrid migration(dashed) algorithms as a

function of the degree of clustering. The dot-dash line shows the times for

the same tasks on one processor of a Cray C90.

of particles and processors. However in Figure 1 the execution time decreases

with increasing clustering. This is because the global router is used in three

ways: (1) to move the particles into position after the bitonic sort found the

new ranking of the particles; (2) to deposit the charge from the particle seg-

ment tails to the mesh; and (3) fetch the force interpolation coefficients from

the mesh to the head of the particle segments. When the clustering increases,

for a fixed total number of particles, the number of distinct segments in the

sorted particle list decreases. Thus as the clustering increases, we observe

the global router traffic and the execution time decreasing. The particle

migration into a sorted list is the most expensive component of this algo-

rithm comprising 55% of the execution time. If a more efficient sort than the

14

bitonic sort is implemented,then the sort/scan-addalgorithm wouldbecome
still morecompetitive.

For low degreesof clustering the migration strategy is faster but as clus-
tering increasesthe superiorscalingpropertiesof the sort/scan-addapproach
win through.

The most significant implication of thesescalingcurves is that we can
limit the performancedegradationassociatedwith spatial clustering. There
is no reasonwhy we could not combine the migration and sort/scan codes
into a hybrid algorithm which measuredthe degreeof particle clustering at
regular intervalsasthe simulation ran and chosethe moreefficientalgorithm.
Someadditional work would be requiredto translate the data structures and
managethe associatedallocations and deallocationsof memoryanytime an
algorithm switch was deemedadvantageous. However this would not be
costlysincetheseswitcheswould occur infrequently. In most casesthe simu-
lation progressessteadily from moreuniform to moreclusteredand switching
would be neededonly once.

Werepeatedthesecalculationson oneprocessorof a Cray C90 to provide

a familiar point of reference for these execution times. The C90 timings are

also plotted in figure 1. We relied on a built-in feature of the cf77 compilation

system to vectorize the charge deposition task. With appropriate command

line arguments the compiler executes the charge deposition loop over the

particle list in blocks whose size is set to be the length of the vector pipeline.

Before each block, it inserts a test using a vectorized scatter and a gather on

integer vectors to determine if any dependencies exist in that blocks scatter

pattern. If it finds none, then it vectorizes that block. Otherwise it executes

that block serially. We also shuffled the particle list after the particles were

loaded into memory, to ameliorate bad memory bank contention which is

likely to become more serious as clustering increases. The timings reported

are averages over 50 timesteps. The hardware performance monitor(HPM)

reported 338 - 347 Mflops for these runs, with an average vector length of

116 and approximately 0.6 memory conflicts per reference.

5.2 Scaling With Total Particle Number

Spatial clustering is just one factor which will influence the relative perfor-

mance of these 3 algorithms. Another important scaling is as a function

of the total number of particles. Different schemes will incur different setup

15

_9
0]

_9

op..4

100.0

10.0

1.0

,,, .**'"

." / J

• /, /• /

.- /I _ t

1.0 10.0 100.0

n(x 108)

Figure 2: Average execution time per timestep for the combination of charge

deposition and force evaluation tasks for the MPFortran load balanced(solid),

sort/scan-add(dotted) and MPL hybrid migration(dashed) algorithms as a

function of the total number of particles for a random spatial distribution.

The dot-dash line shows the corresponding times for one processor of a Cray

C90.

overheads each timestep, ie initializing buffer arrays, pre-sorting particle lists

etc, which may be amortized more effectively for larger numbers of particles.

To explore this we ran all 3 algorithms for a range of particle numbers,

with the particles distributed randomly in space, and with a Maxwellian

velocity distribution which resulted in an average of 16% of the particles

changing mesh cell every timestep. Results are plotted in figure 2.

The load balanced and sort/scan algorithms scale linearly with total par-

ticle number as expected. The hybrid migration cost grows more slowly for

smaller particle numbers but starts to approach linear scaling at large parti-

cle numbers. One reason for this is that the load imbalance for this random

16

distribution decreasesas 1/_/n_,g. It should be pointed out that figure 2 is
plotted for a randomdistribution which strongly favorsthe hybrid migration
schemes.

6 Conclusions

We have studied the performance of three different parallel algorithms for the

particle charge deposition and force evaluation tasks of a 3D electrostatic

or gravitational PIC code on the MasPar MP-2. We considered how the

algorithms scale as a function of particle clustering and with the total number

of particles. The best choice of algorithm depends on the degree of spatial

clustering of the particles and on the importance of ease of programming to

the programmer.

The sort/scan approach, which minimizes message traffic between the

particle and mesh data structures, is clearly superior when any significant

spatial clustering occurs. Therefore for gravitational N-body applications this

is the recommended choice. When the spatial clustering of particles is weak,

as in many electrostatic plasma applications the hybrid particle migration

strategy is fastest.

However both these schemes are significantly more complex to code and

debug than the MPFortran coding of the load balanced algorithm. If ease of

programming is important and the particles are not severely clustered then

this approach should be considered.

We have shown that the influence of particle clustering on the perfor-

mance of our PIC code on the MasPar MP-2 can be managed effectively by

combining the migration and sort/scan approaches, and we can see no reason

why this conclusion should not apply to SIMD architectures in general.

17

References

[1] R.W. Hockney and J.W. Eastwood, Computer Simulation Using

Particles, Institute of Physics, (1988).

[2] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer

Simulation, McGraw-Hill Inc., (1981).

[3] D.W. Walker, "Particle-in-Cell Plasma Simulation Codes on the

Connection Machine", Computing Systems in Engineering, 2, 307,

(1991).

[4] R.G. Hohlfeld, N.F. Comins, D. Shalit, P.A. Shorey and R.C. Giles,

"Implementation of Particle-in-Cell Stellar Dynamics Codes on the

Connection Machine-2", The Journal of Supercomputing, 7, 417,

(1993).

[5] C.S. Lin, A.L. Thring and J. Koga, "A Parallel Particle-in-Cell

Model for the Massively Parallel Processor", Journal of Parallel

and Distributed Computing, 8, 196, (1990).

[6]

[7]

[8]

[9]

P. MacNeice, "An Electro-magnetic PIC Code on the MasPar',

Proc. of the sixth SIAM conf. on Parallel Processing for Scientific

Computing, 129, (1993).

K. Batcher, "Sorting Networks and Their Applications", Proceed-

ings of the AFIPS Spring Joint Computing Conference, 32, p. 307,

(1968).

J. Prins, "Efficient Bitonic Sorting of Large Arrays on the

MasPar MP-I", UNC Dept. of Computer Science TR91-041,

1991. PostScript (l19K) and distribution (17K) (shar file) at

http: llwww, cs.unc. edul-prins/.

W. Hightower, J. Prins, J. Reif, "Implementations of Randomized

Sorting on Large Parallel Machines", Proc. 3rd Symposium on Par-

allel Architectures and Algorithms, ACM, 1992.

18

[10] J. Prins, "B-Flashsort: A High-performanceparallel sort for the
MasParMP-1 and MP-2", UNC Dept. of Computer ScienceTR92-
091, 1992.PostScript (l13K) and distribution (44K) (shar file) at
http ://www. cs.uric.edu/-prins/.

[11] G.E. Blelloch, Vector Models for Data-Parallel Computing, MIT

Press, (1990).

[12] C. Mobarry, et al, in preparation, (1995).

19

Form ApprovedREPORT DOCUMENTATION PAGE OM8No.0704-0188
u

Public repo_ng burden for this COllection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching e._dstingdata sources, gethermg
and maintaining the data needed, and completing and reviewing the colisctic_ of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquan'ets Sorvices, D_ for Infonna_on Operations and Reports, 1215 Jefferson Davis Highway. Suite

1204. Adin_on, VA 22202-4302, gnd to the Office of Management and Budget, Paperwork Reductio_ Pro_ct 10704-01881, Walhin_on, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED
March 1996 Technical Memorandum

4. TITLE AND SUBTITLE

Particle-Mesh Techniques on the MasPar

6. AUTHOR(S)

Peter MacNeice, Clark Mobarry, and Kevin Olson

;7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Hughes STX
4400 Forbes Boulevard

Lanham, Maryland 20706

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

Goddard Space Right Center

National Aeronautics and Space Administration

Washington, DC 20546-0001

11. SUPPLEMENTARYNOTES

5. FUNDING NUMBERS

Code 934

8. PERFORMING ORGANIZATION
REPORT NUMBER

96B00052

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

TM-104632

Peter MacNeice: Hughes STX, Lanham, Maryland

Kevin Olson: George Mason University, Fairfax, Virginia
12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Catagory: 75

This report is available from the NASA Center for AeroSpace Information,
Rf_ l:7.1krid_P. 1 ._nclin(r Rn_cl 1 .inthi_um l-]PJ_ht_ lk4T_ 91 (')OA3-(q01 "1¢q9|-OqOf

13. ABSTRAC_ (Ma_rtcrn_0 mxds') _ " "

12b. DISTRIBUTION CODE

We investigate the most efficient implementations of the charge (mass) assignment and force

interpolation tasks of a particle-in-cell code on the SIMD architecture of the MasPar MP2. Three differ-

ent approaches were tested. The f'n'st emphasized uniform computational (not necessarily communica-

tion) load balance and ease of programming. The second exploited the speed of the Xnet interprocessor

communication network using a particle data migration strategy. The third used sorting and vector scan-

add operations on the particle dataset to minimize the communication traffic required between the

particle and mesh data structures. Algorithm efficiencies were measured as a function of the degree of

spatial clustering of the particles, and as a function of the total number of particles. The sort/scan-add

strategy gave the best performance for a broad range of degree of spatial clustering. It was only beaten

by the migration strategy in the regime of weak clustering. Our results indicate how a hybrid algorithm

combining the migration and sort/scan-add strategies can set an upper limit on the performance degrada-

tion associated with the spatial clustering of particles.

14. SUBJECT TERMS

Particle-Mesh, SIMD Programming

17. SECURITY CLASSIFICATION 18.SECURITY CLASSIRCATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-0%280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

22
16. PRICE CODE

20. lIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)

NaUonal Aerona_cs and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Official Business

Penalty for Private Use, $300

SPECIAL FOURIH-CLASS RATE

POSTAGE & FEES PAID

NASA

PERMIT No. G27

POSTMASTER: If Undeliverable (Secl_n 158,

Postal Manual) Do Not Return

